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Despite many years of research, a method to precisely and quantitatively determine cancer disease state
remains elusive. Current practice for characterizing solid tumors involves the use of varying systems of tumor
grading and staging and thus leaves diagnosis and clinical staging dependent on the experience and skill of the
physicians involved. Although numerous disease markers have been identified, no combination of them has yet
been found that produces a quantifiable and reliable measure of disease state. Newly developed genomic
markers and other measures based on the developing sciences of complexity offer promise that this situation
may soon be changed for the better. In this paper, we examine the potential of two measures of complexity,
fractal dimension and percolation, for use as components of a yet to be determined “disease time” vector that
more accurately quantifies disease state. The measures are applied to a set of micrographs of progressive rat
hepatoma and analyzed in terms of their correlation with cell differentiation, ratio of tumor weight to rat body
weight and tumor growth time. The results provide some support for the idea that measures of complexity
could be important elements of any future cancer “disease time” vector.
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INTRODUCTION

One of the principal characteristics of biological systems
is that they are complex[1]. This complexity allows an
evolving optimal functioning within the environment. This
fact that has been recognized in systems engineering and is
emphasized by the increasing number of engineered nonbio-
logical but biomimetic systems that have appeared over the
past few decades[2–4]. Although living systems are adaptive
and evolve over time, the mapping of system evolution to
chronological time is most often nonlinear[5]. That being
the case, additional measures or markers are used to supple-
ment chronological time, when, for example, the state of
disease progression is assessed.

If complexity is one of the hallmarks of living systems,
then its measure might provide a way to more accurately and
quantitatively characterize disease progression. For that pur-
pose, we have applied measures of complexity to a particular
type of cancer, rat hepatoma, and looked for signs of corre-
lation between disease state and complexity measures.

Tumors are considered by many to be more complex than
the normal tissues from which they are derived. One measure
of complexity is morphologic complexity. Tumor cells, by
definition, show variations from normal size, shape, and the
ratio of nucleus to cytoplasm. Less differentiated, and more
malignant tumors, have a higher percentage of cells that are
either larger than normal cells or smaller than normal or
both. Such cells may have compound or multiple nuclei
within a single cell cytoplasm, just as one example of vari-
ability and complexity.

The functional evaluation of tumors also shows they ex-
hibit less predictable behavior than normal cells. Tumor cells

may utilize both aerobic and anaerobic metabolism to pro-
duce energy for cell activities, synthesize unusual or aberrant
proteins, or may utilize derepressed portions of fetal/
embryonic genome. Many tumor cells show immaturity of
the cell surface, a higher degree of cell lability and have a
propensity for more mutation, all features not seen in most
differentiated adult cells. Some populations of tumor cells
resist normal apoptotic signals, and have lengthened lifespan
(as a population may be considered immortal), while other
tumor cells in the same tumor may die rapidly, being unable
to adapt to the conditions of growth characterizing the tumor
(hypoxic environment, for example). Although nearly a cen-
tury of research has sought to identify a “simple” character-
istic possessed by all tumor cells, the result of such inquiry
has been recognition of the constantly evolving and complex
character of all neoplastic cells.

In seeking to apply measures of complexity to cancer in
order to determine the correlation of those measures with the
disease state, two serious problems exist. First, there are is-
sues in identifying disease state in solid cancer.

“Tumor grade indicates the level of malignancy and is
based on the degree of anaplasia (or deformity in behav-
ior and form) seen in cancerous cells under the micro-
scope… There is still no general clinical agreement on the
grading [6].”

Second, although there are a number of measures of system
complexity [7], there is also no agreement on any particular
one as having general applicability. The implication of this is
that there is no agreement as to what measure of complexity
should be considered as an independent variable(what is the
x axis?) while the tumor grading is poorly defined(what are
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the values on they axis?). This makes a meaningful analysis
problematic, but the problem can be overcome to a certain
extent, as shown below.

Cancer is a complex disease process characterized by the
uncontrolled proliferation of abnormal cells. Treatment plans
for most cancer patients are based on the interpretation of
diagnostic biopsies and clinical staging of disease(primarily
by evaluation of primary and distant tumor sites, including
lymph nodes). For practical reasons, treatment plans are for-
mulated on “average” outcomes, derived from the results of
clinical studies of similar cancers, and not geared to indi-
vidual patients. As such, most patients can be expected
(based on epidemiological data) to respond in a predictable
manner to therapy. Many will respond, but some will not,
since their individual pattern of disease progression does not
fit “the average” as shown in Fig. 1. There have been striking
instances in which intensively managedindividual patients
attain significantly better disease control than those managed
according to methods based on average outcome(the winner
of the 2003 Tour de France bicycle race, Lance Armstrong,
with metastatic testicular cancer, for example). Of course,
some patients do not do as well as “the average,” have poorer
response to therapy, and succumb sooner.

Similar neoplasms grow and progress differently in differ-
ent individuals. Underlying reasons for this differential pat-
tern of growth include the type(s) of mutations leading to
initial cancer cell growth, success of cancer cells in develop-
ing vasculature and support stroma, patient immune and in-
flammatory response to cancer cells, patient and tumor nutri-
tion, and the ability of the cancer cells to evolve resistant
forms in response to attack. The rate of growth of neoplasms
follows a relatively predictable biological, but not chrono-
logical, pattern in each individual. We identify this predict-
able biological growth pattern as the disease state reflecting
different stages in the growth, differentiation, and progres-
sion of the cancer and measured by a hypothetical “disease
time” as shown in Fig. 2.

Therapy is designed to kill cancer cells while leaving nor-
mal cells intact. In general, the type, duration and amount of
therapy are based on the histologic assessment of tumor type.

From this assessment, a prediction of future growth is made
based on past experience with this tumor morphology.
Therapy is not usually based on(or monitored by) repetitive
reevaluation of tumor morphology, ongoing assessment of
tumor gene expression, or other measures of cancer “disease
time.” Increasing the predictive value of the surgical biopsy
and additional incremental evaluation of cancers may pro-
vide better control of cancer growth and better patient out-
comes through individualizing therapeutic planning and
monitoring.

Pathologists evaluate a variety of microscopic features
when analyzing tumor biopsies. Features such as cell size,
nuclear size, nuclear shape, ratio of nuclear to cytoplasmic
size, subcellular organelle occurrence and placement
(nucleoli, for example) are commonly evaluated. The orga-
nization of neoplastic cells into tissue architecture such as
ducts and glands is considered important. The presence or
absence of mitotic figures is typically taken as a measure of
cell growth fraction and predictive of ongoing cell division.
The general shape of the neoplastic cell population and de-
gree of invasiveness may be analyzed as additional criteria
indicating benign or malignant behavior.

Pathologists commonly evaluate the morphology in many
different areas of the surgical biopsy to arrive at a definitive
morphologic diagnosis that will be used to define the poten-
tial future growth of the neoplasm and therapy for the dis-
ease. In most cases, the least differentiated and/or most
poorly organized area of the tumor is taken as being the area
most predictive of future growth.

The experience of the pathologist is the key to arriving at
an accurate diagnosis. This experience is gained from years
of examining surgical biopsies, studying and comparing mor-
phologic features, and relating these images to eventual case
outcomes. However, even highly experienced pathologists
examining the same biopsies may disagree on the diagnosis,
suggesting fundamental differences in perception, visualiza-
tion, and utilization of their recalled images[8].

In recent times, as diagnosis and treatment of cancer have
advanced, there has been much emphasis on the use of quan-

FIG. 1. Disease progression vs chronological time. FIG. 2. Disease progression vs “disease time.”
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titative and semiquantitative methods in analyzing cancer
micrographs in order to quantify the exhibited morphological
features. However, the tremendous diversity seen both in the
type as well as in the other characteristics of cancer makes
this task difficult. In particular, the disease progression rate
shows wide variation even between experiments done under
similar circumstances[9]. As a result, the usual statistical
averaging using chronological time as a parameter cannot be
expected to lead to reliable predictions. It is thus highly de-
sirable to identify a suitable variable, or set of independent
variables, which would help to characterize cancer disease
state accurately in terms of a suitable “disease time” vector.

Many cancer markers have been identified over the years
[10], but no combination of them has yet allowed unambigu-
ous quantitative determination of disease state. Recent ad-
vances in bioinformatics have uncovered a number of ge-
nomic markers that are related to specific cancers. These
markers, whose significance is only beginning to be fully
understood, offer great potential for use in the creation of a
“disease time” vector.

There are other potential markers that can be derived from
the evolving sciences of complexity. The study of complex
adaptive systems(which includes all living systems) took
root in the second half of the 20th century and has been
progressing ever since. As in many new fields, some defini-
tions have yet to be agreed upon, and in this case, “complex-
ity” itself is one of those. Properties associated with com-
plexity include diversity, Shannon entropy, the shortest
algorithm needed to describe the system, the algorithm that
takes the shortest time to describe the system, fractal dimen-
sion, percolation, emergent behavior and others[7]. Com-
plexity is one of those things that everyone can identify but
which is difficult to define. An example is found in the tran-
sition between water and ice. Both water and ice appear to be
simple, rather than complex systems. At the transition be-
tween the two, there will be a diversity of ice masses floating
in water. A maximum in complexity will occur somewhere in
the region between the more simple uniform phases. If one
considers the irreducible amount of information required to
describe the water-ice system, the maximum amount of in-
formation is required for the water phase(mass of a single
water molecule, as well as position, momentum and spatial
orientation of each water molecule must be specified), while
the minimum amount of information is required for the ice
phase(total mass, center of mass, total momentum, and lat-
tice parameters must be specified). In terms of the informa-
tion required to describe a system, we hypothesize that:

A system is maximally complex when the rate of change of
the irreducible amount of information required to de-
scribe that system with respect to some parameter or pa-
rameter set is an extremum.

This means that the absolute value of the slope of the amount
of irreducible information required to describe the system
versus some parameter reaches a maximum(when the
amount of information is changing from a smaller to a larger
value, e.g., from ice to water, or the information required to
describe it is changing from a larger to a smaller value, e.g.,
water to ice) when the system is maximally complex. We
will consider this hypothesis in the light of our results later,
but it also has some relevance to one of the measures of

complexity we consider, the fractal dimension of a micro-
graph.

The fractal dimension[11] is related to the space filling
nature of an object, with a two dimensional object such as a
square having fractal dimensionD=2 and a one dimensional
object such as a straight line having fractal dimensionD=1.
Squares and straight lines are not generally considered to be
complex, so one would expect a maximum in complexity to
occur for objects having fractal dimensions somewhere be-
tween integral values in analogy to finding maximum com-
plexity at the critical point at the phase transition between
water and ice, i.e., nearD=1.5 for a two-dimensional em-
bedding space.

The other complexity measures we use are both related to
percolation. Percolation[1,12] is a measure of the connectiv-
ity of a region of space. If at least one unbroken path exists
from the bottom to the top of a region in 2 dimensions, the
region is said to percolate. Percolation is often described in
terms of a “forest fire” model[1]. In this model, a finite
lattice is partially populated by “trees” or occupied sites. At
time step 1, all the trees on the bottom row of the lattice are
set on “fire.” At the next time step, the trees that were burn-
ing are replaced by “ash” and adjacent unburned trees are set
on fire. This process continues until the fire burns out. At that
time, lattice sites can either be unoccupied, contain ash or
contain an unburned tree. The parameters associated with the
process are the percolation time,tp, the fractional percola-
tion, F, and the total percolation time,T. In this model, the
percolation time,tp, or the number of time steps required for
the fire to reach the top of the lattice divided by the number
of rows in the lattice, is infinite if no complete path exists
from the bottom to the top of the lattice. The fractional per-
colation,F, is the number of unburned trees divided by the
sum of unburned and burned trees. Finally, the total percola-
tion time, T, is the number of time steps required until the
fire goes out divided by the number of rows in the lattice.
Percolation for an image can be characterized by these pa-
rameters if the image is considered to be a two dimensional
lattice in which each pixel location represents a lattice site
and a site is said to be occupied if its associated pixel is some
specified color. A more detailed description of how the frac-
tal dimension and percolation measures are calculated are
provided below.

In this paper, we first describe the particular cancer ana-
lyzed, rat hepatoma, how the samples were collected, how
the slides were prepared and how the images were taken.
Next, the standard parameters used to characterize that data
set are discussed. The complexity measures of image mor-
phology are then covered in some detail followed by the
analysis procedure, i.e., preprocessing of images, conversion
of images to data files, calculation of fractal dimension, frac-
tional percolation, total percolation time and an estimate of
the irreducible amount of information needed to describe the
images. The results of this analysis are then presented includ-
ing a linear correlation matrix relating all pertinent variables.
Finally, the results are discussed, their implications analyzed
and the future direction of this research considered.

DATA SET

Female Buffalo rats(8 weeks old) were obtained from a
commercial vendor(Harlan Laboratory Animals, Dublin,
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VA ), housed singly in polycarbonate cages, fed a commer-
cial, nutritionally complete rodent diet(Harlan Rat Chow),
and allowed access to public waterad libitum. Prior to the
initiation of this work, a protocol for experimentation was
submitted and approved by the Institutional Animal Care and
Use Committee. During the conduct of experimentation, ani-
mals were treated in accordance with guidelines for care and
use of laboratory animals as promulgated by AALAC. Work
was monitored by the University Veterinarian. Animal use
was consistent with highest acceptable standards of humane
care and use in experimentation.

Morris 7777 transplantable hepatomas were raised in tis-
sue culture and then an aliquot of 107 cells was injected
aseptically in the subcutis anterior to the left hind leg of
selected rats. Tumor growth was subsequently monitored on
a daily basis by gentle palpation. Groups of rats were sacri-
ficed at weekly intervals for 8 weeks, tumors were gently
exposed, photographedin situ, and then collected for further
study. Pieces of tumors were fixed in 10% buffered formalin
solution for a minimum of 48 hours, dehydrated after fixa-
tion in a series of graded alcohols and xylene, and then in-
filtrated with paraffin polymer. Sections were cut at 3 mi-
crons, rehydrated, and then batch stained on an automated
stainer (Shandon Southern Corp) with hematoxylin-eosin
stains. Digital photographs of stained four micrometer tumor
sections were acquired using a Nikon Eclipse E600 photomi-
croscope, DXM 1200 Digital Camera, and processed with
Nikon ACT-1, version 2 proprietary image capture software.
All sections were photographed at original magnification
403. Images were stored as medium compression jpeg files
s8003600 pixelsd. The data set analyzed consisted of 9 im-
ages displaying different degrees of cell differentiation.
These images are shown in Figs. 3–11 as described below.

Figures 3 and 4: disorganized early growth. Tumor cells
show marked variation in cell and nuclear size and shape.
Note the presence of enlarged nuclei, taken to be indicative
of abortive mitotic events, and nuclear hyperchromasia.
Some degenerate tumor cells(arrows) are present and there
is minimal inflammatory cell infiltrate.

Figures 5–8: tumor maturation is evident with less cel-
lular pleomorphism(size and shape variation), decreased
number of mitotic indicators, and early formation of cell
cords typical of differentiated hepatomas.

Figures 9 and 10: cell cords are evident in these micro-
graphs, indicating further tumor organization. Several small
areas of necrosis(arrows) are present in each figure, and
individual necrotic cells are scattered throughout.

Figure 11: well differentiated mature tumor, showing
pseudoacinar organization and cells arrayed in cords.

STANDARD PARAMETERS

For each of the images, there was associated data that is
related to, but does not completely define, the state of dis-
ease. This data was the tumor growth time from incubation
in days, the tumor weight and the rat weight in gram weights
at the time the tumor was harvested. Table I shows the incu-

FIG. 3. (Color online) Image 1. FIG. 4. (Color online) Image 2.

FIG. 5. (Color online) Image 3.
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bation time, tumor weight, rat weight and tumor weight/rat
weight ratios that correspond to each of the images.

COMPLEXITY MEASURES OF IMAGE MORPHOLOGY

There is a long history of using image analysis to deter-
mine the morphology of a system associated with an image
[13]. Recently, techniques based on concepts from the field
of artificial life [13] have been used for image analysis[14].
The measures of complexity that we use involve fractal di-
mension and percolation. We will consider each of these in
turn.

One factor making determination of the extent of cancer
spread difficult is that the typical malignancy has a very ir-
regular, nonsmooth boundary. A large number of experimen-
tal studies done on different types of cancer have shown that
these irregularities are present over a range of length scales

(up to cellular dimensions), implying that the tumor bound-
ary has afractal nature, and could be characterized by a
fractal dimension[15–17] This means that the tumor invades
the available space in a nonuniform way, and has an effective
dimension less than the embedding topological dimension
(which is 3 for most tumors). Thus, the fractal dimension is a
very useful quantity in characterizing the state of growth of
the tumor. In general, the roughness of the interface between
the tumor and nontumor region is an indicator of whether the
tumor is likely to become infiltrative or not. Tumors whose
interfaces are very rough are seen to be more aggressive,
while ones with relatively smooth boundaries are less likely
to be highly infiltrative. The fractal dimension is closely re-
lated to the roughness of the interface, which makes it
closely correlated to the growth characteristics of the tumor.
There has been a considerable amount of research carried out
on relating fractal dimension to the presence or absence of
cancerous tissue and a number of extensive recent review

FIG. 6. (Color online) Image 4.

FIG. 7. (Color online) Image 5.

FIG. 8. (Color online) Image 6.

FIG. 9. (Color online) Image 7.
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articles are available[15–17]. Changes in tumor vascular ar-
chitecture have been monitored via determination of the frac-
tal dimension of the associated images[18]. There is a grow-
ing but not universal belief that the fractal dimension of
cancer images is an important marker that relates to the dis-
ease state:

“There are strong theoretical reasons for using fractal
geometry in measurements of biological systems…” [16].
“ If carefully applied, fractal methods may someday have a
significant impact on our understanding of challenges in
treatment delivery and diagnosis of cancer.” [19].
“…fractal analysis applied on digitized cell shapes is a
reliable method for cell complexity measurement that can
be used alone or as an additional parameter along with
morphometrical measurements both in routine work and
research.” [20].
The concept of a fractal dimension to describe structures

which look the same at all length scales was first proposed
by Mandelbrot[11]. Although in strict terms, this is a purely
mathematical concept, there are many examples in nature
that closely approximate a fractal object, though only over
particular ranges of scale. Such objects are usually referred

to asself-similarto indicate their scale-invariant structure. In
simple terms, the common characteristic of such fractal ob-
jects is that their length(if the object is a curve, otherwise it
could be the area or volume) depends on the length scale
used to measure it, and the fractal dimension tells us the
precise nature of this dependence. A rigorous mathematical
definition of the fractal dimension,D (also called Haussdorff
dimension), of such an object is usually expressed through
the relation

D = lim
«➛0

ln Ns«d
lns1/«d

, s1d

whereD is the fractal dimension,« is the length of one side
of a hypercube which has the same dimension,n, as the
space in which an object is embedded andNs«d is the mini-
mum number of hypercubes of dimension« required to com-
pletely cover the object. Since one cannot achieve the limit
of « going to 0 in numerical calculations, lnNs«d and lns1/«d
are calculated over a range of scales using hypercubes vary-
ing in size from the smallest single cube required to cover
the object to cubes at the resolution limit of the set of points
chosen to represent the object[when this limit is reached
Ns«d equals the number of points and remains constant for
all smaller values of«]. These values are then plotted with
the slope representing an “instantaneous fractal dimension.”
In practice, one would like to find a range of scale of an
order of magnitude or more over which the slope is constant.
The object will then be said to have a fractal dimensionD
=slope and self-similarity over that range. Depending upon
the range over which the slope is calculated,D can vary
widely. This technique is called the box counting algorithm
(BCA).

Most calculations of fractal dimension of digital images
simply convert the image to black and white according to
some protocol, apply the BCA to the set of pixel positions
represented by the black pixel data set, find a range where
the slope is constant, and conclude that the image has a frac-
tal dimension equal to the slope within the range where the

TABLE I. Tumor growth times and tumor weight/rat weight
ratios corresponding to each image.

Image No. Growth time(days) Tumor weight/rat weight

1 7 0.000

2 7 0.000

3 7 0.000

4 14 0.007

5 14 0.002

6 14 0.012

7 21 0.026

8 35 0.021

9 35 0.044

FIG. 10. (Color online) Image 8. FIG. 11. (Color online) Image 9.
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slope is constant. A closer examination of the BCA, however,
provides more information about the morphology of the im-
age than this procedure suggests. If an object is represented
by an array of points embedded in an n dimensional space,
then we define

Ns«d = N0s«d − N«, s2d

whereNs«d is the number of hypercubes of size« required to
cover the set of points,N0s«d is the number of hypercubes of
size « required to completely fill the smallest single hyper-
cube that can completely contain all the points, andN« is the
number of hypercubes of size« (in the smallest single hy-
percube that can completely contain all the points) that are
empty.

If V0 is the volume of the smallest single hypercube that
can completely contain the set of points andV« is the volume
of all the voids within the object of dimension« or larger,
then in an approximate sense

Ns«d < V0/«
n − V«/«

n = V0s1/«dns1 − V«/V0d s3d

and

ln Ns«d < lnsV0d + n lns1/«d + lns1 − V«/V0d. s4d

An examination of Eq.(4) indicates that if there are no
voids in an object with dimension smaller than some given«,
then the first and third terms on the right-hand side of Eq.(4)
are constant for values of« smaller than this and the slope of
the curve generated by the BCA for scales« and smaller
should be close to the dimension of the space in which the
set of points is embedded. Deviations of the slope from the
dimension of the embedding space at a given scale are re-
lated to the distribution of voids at that scale. This leads to
the interesting speculation that:

The curve produced by the BCA for a set of points is
related to the distribution of voids within that set of points
with the corollary that the curve produced by the BCA on
the complimentary set of points should be related the dis-
tribution of points themselves.
Our simple analysis of the BCA has two implications for

the analysis of cancer micrographs:(1) the scale at which
morphological differences between images occur might be
evident from the scale at which the BCA curves for images

deviate from one another, and(2) the BCA curve for the
complimentary set of points(the locations of the white pix-
els) and its fractal dimension might be more correlated with
the tissue morphology than the fractal dimension of set of
points itself. Due to the latter consideration, the fractal di-
mension of both the black pixel set and the white pixel set
was processed for each image.

In implementing the BCA in a computer algorithm, we
followed a recently reported innovative technique that mini-
mizes memory requirements[21]. In addition, each set of
data points was scaled so that each point was replaced by
(0.98 times its value)/(the maximumx-axis value in the set)
+0.01. The algorithm was validated on data sets representing
a linear object(sine curve), a two-dimensional object(filled
in square) and a complex object(Henon Map).

For the percolation measurements, a computer program
was developed that implemented the commonly utilized for-
est fire model[1]. In this program, pixels were considered to
be adjacent on the square lattice if they were nearest neigh-
bors or nearest diagonal neighbors(8 possible total adjacent
locations). In previous work devoted to stochastic modeling
of molecular self-assembly[22], it was found that fractional
percolation and total percolation time were sensitive indica-
tors of structural phase transitions in the model films, and
might provide an indication of the same sort of transitions, if
they exist, as in disease progression.

The computer algorithms were written in the FutureBasic
programming language and run on a Macintosh G5 computer
using the OS 10.2 operating sysem.

ANALYSIS PROCEDURE AND RESULTS

The rat hematoma images were preprocessed using Adobe
Photoshop 7.0 image processing software. The processing
proceeded in the following way.

(1) In order to reduce computation times, the color jpeg
images were rescaled from an original size of 800
3600 pixels to a reduced size of 4683351 pixels using
bicubic pixel interpolation. This reduction resulted in image
degradation at the highest resolution and limited the range
over which meaningful calculations could take place. The
physical distance captured by each image from left to right

FIG. 12. (Color online) Image
preprocessing.
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was 0.400 mm, so that the distance between the centers of
individual pixels was 0.854mm.

(2) The color jpeg images were converted to gray scale.
(3) The gray scale images were converted to black and

white using a threshold level of 0.53 maximum intensity.
(4) The black and white images were filtered to remove

stray pixel “noise” using the “dust removal option” with a
2 pixel radius.

(5) The black and white images were then converted to
two data sets containing the locations of the black pixels and
white pixels, respectively.

(6) The original color jpeg images were compressed us-
ing the standard gzip algorithm and the files sizes,Imin, were
recorded as an indication of the irreducible amount of infor-
mation required to describe those images.
This process is shown in Fig. 12.

Once the data sets had been obtained, the BCA was used
to generate lnNs«d versus lns1/«d curves for both the black
pixel and white pixel data sets for each of the 9 images. The
starting value was«=1 and the ending value was«
=0.0015 so that« ranged over almost 3 orders of magnitude.
The step reduction factor for the«’s was 0.81. It was found
that the curves were linearsr2ù0.999d in the region 0.003
ø«ø0.052(14 points,; one order of magnitude) for all 18

curves. The values of the slopes of the curves in that region
were identified as the fractal dimensions and complimentary
fractal dimensions of their associated images.

The black pixel and white pixel data sets were used as
input to the percolation analysis computer program and the
fractional percolation,F, and the total percolation time,T,
were calculated. The calculated values for each of the 9 im-
ages are given in Table II.

The fractal dimension,D, percolation parametersF andT
and the irreducible amount of information,Imin, needed to
describe the images were considered to be independent vari-
ables in this analysis. The other independent variable is of
course the tumor growth time,t. In order to determine the
correlation of the independent variables to disease state, they
needed to be compared with dependent variables that are
commonly used in the assessment of disease state, cell dif-
ferentiation,d, and ratio of tumor weight to rat weight,R.
Two of the variables have already been presented in Table I,
i.e., the tumor growth time and the tumor weight to rat
weight ratio. The second dependent variable is the degree of
cell differentiation in the images. In order to get a quantifi-
able measure of this variable, 4 pathologists were asked to
independently arrange the images from the lowest degree(1)
of cell differentiation(undifferentiated) to the highest degree

TABLE II. Values of calculated parameters for the 9 rat
hepatoma images.

Image No. Db Dw Fb Fw Tb Tw Imin (kb)

1 1.664 1.776 0.105 0.984 0.211 1.114 269.2

2 1.631 1.804 0.091 0.995 0.162 1.051 241.8

3 1.611 1.822 0.166 0.970 0.601 1.154 272.0

4 1.626 1.811 0.094 0.964 0.205 1.125 280.1

5 1.600 1.823 0.190 0.987 0.368 1.088 260.3

6 1.625 1.804 0.069 0.986 0.182 1.040 260.5

7 1.617 1.812 0.023 0.983 0.083 1.142 256.1

8 1.635 1.793 0.216 0.988 0.550 1.083 246.1

9 1.634 1.799 0.091 0.956 0.285 1.259 226.6

TABLE III. Cell differentiation (1=undifferentiated; 9=highly differentiated) image orders. Pathologist 1:
Dr. John L. Robertson, Center for Comparative Oncology. Pathologist 2: Dr. Robert Maronpot, National
Institute of Environmental Health Science. Pathologist 3: Dr. Gerry Long, Eli Lilly Inc. Pathologist 4: Dr.
Kurt Zimmerman, Virginia-Maryland Regional College of Veterinary Medicine.

Image No. Pathologist 1 Pathologist 2 Pathologist 3 Pathologist 4 Pathologist
average

1 1 1 2 1 1.25

2 2 2 1 2 1.75

3 3 7 7 3 5.00

4 4 8 6 8 6.50

5 5 9 8 7 7.25

6 6 3 5 4 4.50

7 7 4 3 5 4.75

8 8 5 4 6 5.75

9 9 6 9 9 8.25

FIG. 13. Fractal dimension of the black pixel sets vs image
order for the 4 pathologists.

SPILLMAN et al. PHYSICAL REVIEW E 70, 061911(2004)

061911-8



(9) of cell differentiation (well differentiated). The image
ordering by the individual pathologists and the average order
of the images is given in Table III. The fractal dimensions of
the images versus image order for all 4 pathologists is shown
in Fig. 13, where no obvious correlation can be observed.
However, the measure of degree of the cell differentiation of
each of the images was chosen to be its average image order
position and this was used in the subsequent analysis.

The final step in the analysis was to calculate the linear
correlation matrix(r values) for all of the variables deter-
mined, i.e., fractal dimension of black pixel data sets,Db,
fractal dimension of white pixel data sets,Dw, fractional per-
colation of black pixel data sets,Fb, fractional percolation of
white pixel data sets,Fw, total percolation time of black pixel
data sets,Tb, total percolation time of white pixel data sets,
and the irreducible amount of information,Imin, needed to
describe the images, degree of cell differentiation,d, the ra-
tio of tumor weight to rat weight,R, and the tumor growth

time, t. An r value for 2 parameters of 0.585 for 9 points
means there is only a 10% chance that two variables are
unrelated while anr value of 0.670 means there is only a 5%
chance they are unrelated[23]. The linear correlation matrix
is given in Table IV. Figures 14 and 15 show the deviation of
the BCA generated curves for the black and white pixel sets
from their averages. In Figs. 16 and 17, cell differentiation
versus fractal dimension of the black pixel data sets and
white pixel data sets are presented with linear and quadratic
fits, respectively. Figure 18 shows the first derivative of the
irreducible information required to describe the original im-
ages(as estimated by their compressed file size using the
gzip differentiation.

SUMMARY, DISCUSSION, AND CONCLUSIONS

In carrying out this research, our primary goal was to
investigate whether measures of complexity had the potential
to be used as components of a hypothetical cancer “disease
time” vector (multiple marker) that would provide an accu-
rate quantifiable measure of disease state. This is a difficult
problem, since disease state(tumor grading for solid tumors)
consists of broad categories, and physician skill and experi-

TABLE IV. Linear correlation matrix of relevant parameters.
Db=fractal dimension of the black pixel sets.Dw=fractal dimension
of the white pixel sets.Fb=fractional percolation of the black pixel
sets.Fw=fractional percolation of the white pixel sets.Tb=total
percolation time of the black pixel sets.Tw=total percolation time
of the white pixel sets.Imin= irreducible amount of information to
describe the image.d=cell differentiation from the average image
rankings of the 4 pathologists.R=tumor weight/rat weight.t
=tumor growth time.

Db Dw Fb Fw Tb Tw Imin d R t

Db 1 0.97 0.18 0.03 0.24 0.05 0.11 0.54 0.06 0.04

Dw 0.97 1 0.10 0.14 0.20 0.02 0.21 0.48 0.14 0.18

Fb 0.18 0.10 1 0.12 0.88 0.14 0.04 0.26 0.27 0.15

Fw 0.03 0.14 0.12 1 0.14 0.85 0.01 0.62 0.48 0.31

Tb 0.24 0.20 0.88 0.14 1 0.12 0.05 0.31 0.11 0.19

Tw 0.05 0.02 0.14 0.85 0.12 1 0.30 0.52 0.65 0.45

Imin 0.11 0.21 0.04 0.01 0.05 0.30 1 0.20 0.68 0.65

d 0.54 0.48 0.26 0.62 0.31 0.52 0.20 1 0.57 0.63

R 0.06 0.14 0.27 0.48 0.11 0.65 0.68 0.57 1 0.88

t 0.04 0.18 0.15 0.31 0.19 0.45 0.65 0.63 0.88 1

FIG. 14. Deviation of all black pixel BCA curves from their
average.

FIG. 15. Deviation of all white pixel BCA curves from their
average.

FIG. 16. Fractal dimension vs cell differentiation for black and
white pixel sets with Linear fits.
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ence play a large role in determining the accuracy of the
grade to which any given tumor is assigned. If one is at-
tempting to do correlations, this results in an ill-defined “y
axis” is ill-defined. In our case, we examined 2 dependent
variables that are usually associated with disease state in
solid tumors, tumor cell differentiation,d, and the ratio of
tumor weight to animal weight,R. Of the two, the most
uncertain is cell differentiation, which is a somewhat quali-
tative measure of tumor morphology utilizing broad catego-
ries. When asked to arrange the 9 tumor micrographs in or-
der of cell differentiation, 4 experienced pathologists came
up with 4 different orderings. This illustrates the difficulty in
quantifying cell differentiation as indicated in Table III and
shown in Fig. 13. Our measure of the cell differentiation for
each image was chosen as the average place in the order
considering all 4 pathologists. Although approximate, this
allowed us to determine the amount of correlation between
the dependent variables,d andR, and the independent vari-
ables: tumor growth time,t, and measures of complexity
fractal dimension,D, fractional percolation,F, and total per-
colation time,T.

A number of hypotheses were tested in this research.
First, in a consideration of the box counting algorithm
(BCA), analysis suggested that differences in morphology
between images might be manifested as differences between

the curves generated by the BCA, allowing the scale at
which significant features might differ between images to be
determined. A mathematical analysis of the BCA also sug-
gested that its application to the white pixel location data set
would provide information about the black pixel location
data set and vice versa, with the implication that the fractal
dimension measures of the white pixel data set would corre-
late better with the dependent disease state variables than the
fractal dimension measures of the black pixel location data
set. For that reason, for each image,D, F, andT were deter-
mined for both data sets. A final supposition was that maxi-
mum complexity in terms of fractal dimension would occur
somewhere in the middle region betweenD=1 and D=2,
i.e., a line and a filled in two-dimensional object such as a
rectangle. We will examine each of these suppositions in turn
while noting that the linear correlation coefficient between
tumor growth time and tumor weight/rat weight wasr
=0.88, and the linear correlation coefficient between tumor
growth time and cell differentiation wasr =0.64. These re-
sults indicate that(1) correlations between the independent
complexity based variables and the dependent variables
should be greater than 0.6 to be of significance, and(2) we
can have some measure of confidence in our approximate
measure of cell differentiation.

The differences between the BCA curves and their aver-
ages are shown in Fig. 14 for the black pixel location data
sets and in Fig. 15 for the white pixel location data sets. As
can be seen, there are reasonably clearly defined scales at
which the curves suddenly diverge. This indicates that at
smaller scales, the number of boxes required to completely
contain the individual pixel sets becomes different for the 9
images and implies that analysis of the images at larger
scales would probably not produce useful results. In the case
of the black pixel location BCA curves, this deviation occurs
at ,45 mm, while for the white pixel locations, the deviation
occurs at,25 mm. If the BCA curves for the white pixel
location data sets contain information about the cell mor-
phology and the BCA curves for the black pixel location data
sets contain information about the morphology of the spaces
between the cells, this implies that deviations in the images
from each other in terms of the dimensions of the spaces
between the cells begin to occur at a larger scale than devia-
tions in the images from each other in terms of the dimen-
sions of the cells themselves. In effect, the analytical process
is able to quantify complexity(fractal) measures of benign

FIG. 17. Fractal dimension vs cell differentiation for black and
white pixel sets with quadratic fits.

FIG. 18. Rate of change ofImin vs cell
differentiation.
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and malignant morphology. The data indicate significant dif-
ferences in white pixel(cell morphology) and black pixel
(intercellular space organization) data. This is not unex-
pected, since tumor cell “packing” varies widely if tumors
are attempting to replicate tissue architecture(that is, to be-
come more orderly and therefore less complex) or fail to do
so (are more malignant and undifferentiated). The real value
of these measures is that they provide a quantifiable attribute
of cell organization or disorganization, something that is dif-
ficult for pathologists to do.

Differences between the black pixel location data sets and
the white pixel location data sets were found when examin-
ing the linear correlation data presented in Table IV but these
were not consistent. Significant correlations between the de-
pendent variables and independent complexity variablessr
.0.6d occurred in four cases:Fw versusd sr =0.62d, Tw ver-
susR sr =0.65d, Imin versusR sr =0.68d, and Imin versust sr
=0.65d. Four other correlations approached the 0.6 value:Db

versusd sr =0.54d, Tw versusd sr =0.52d, Dw versusd sr
=0.49d, andFw versusR sr =0.48d.

The correlations calculated in Table IV were linear, but
there is no reason to suppose that the functional dependen-
cies between the variables should be linear. If theDb andDw
versusd data are fit to linear, quadratic and cubic functions,
the r values for the black pixel data are 0.54, 0.71, and 0.72
while ther values for the white pixel data are 0.48, 0.65, and
0.66, respectively. The fact that ther values do not increase
between the quadratic and cubic fits suggests that there is a
quadratic relationship between fractal dimension and cell dif-
ferentiation, since ther values for quadratic fits for both the
black and white pixel data are greater than 0.6. The black
pixel quadratic fit reaches a minimum at a value of differen-
tiation equal to 5.9 while the white pixel data fit reaches a
maximum at a value of differentiation equal to 5.6. Since the
the black pixel data comes closest to a fractal dimension
value of 1.5 at its minimum, it suggests that the physical
structure of progressive rat hepatoma becomes maximally
complex at a value of differentiation between 5 and 6.

In order to examine the hypothesis put forward previously
that maximum complexity occurs when an extremum occurs
in the rate of change of the irreducible amount of informa-
tion required to describe a system with respect to some pa-
rameter, the rate of change ofImin with respect tod was
calculated. This is shown in Fig. 18. As can be seen, an
extremum occurs at a value ofd=4.9, which is close to the
value ofd suggesting maximum complexity from the fractal
dimension data. An additional calculation assuming thatImin
could be represented by maximum jpeg compression was
also performed. The results were found to be essentially the
same as those obtained using gzip compression with the ex-
tremum occurring at the same value of cell differentiation,
d=4.9. The limited number of data points in this study does
not allow us to claim strong support for the hypothesis, but
the data is not inconsistent with it.

Analysis of the data suggests that:(1) consideration of the
entire BCA curve can provide useful information above and
beyond allowing for a single measure of fractal dimension,
i.e., scales of interest where differences in image morphol-
ogy occur,(2) there was no indication that the complimen-

tary data set might have more correlation with disease state
than the primary data set,(3) the relationship between dis-
ease state and measures of complexity is likely to be nonlin-
ear, (4) there are indications that the this complex disease
system passes through a state of maximum complexity as it
progresses, and, finally,(5) the data is not inconsistent with
the hypothesis that maximum complexity occurs when an
extremum occurs in the rate of change of the irreducible
amount of information required to describe a system with
respect to some parameter. Thus the data provides some sup-
port for the idea that measures of complexity could be im-
portant elements of any future cancer “disease time” vector.

From a practical standpoint, variations in staining inten-
sity and types of stains used would be expected to affect the
processing and interpretation of images, particularly in
choosing the threshold value for the conversion from gray-
scale to black and white images. For example, more intense
nuclear staining(i.e., longer exposure to hematoxylin pro-
cessing reagents) might cause smaller segments of nuclei
(tangential cuts or partial nuclei) to be displayed and there-
fore increase the number of discrete items present for analy-
sis. Likewise, the use of other stains that highlight other cell
features(unique proteins or organelles) could provide addi-
tional information for analysis. In fact, one approach to de-
scribing tumor growth characteristics with morphologic mea-
sures is to use multiple histochemical and
immunohistochemical stains on the same tumor sections as a
means of assessing tumor pleomorphism, differentiation, and
replicative state.

There is, however, clearly a need to standardize staining
techniques to insure uniformity of image analysis between
tumors. In this study, all tumors were cut to the same thick-
ness, batch stained on an automated stainer at the same time,
and examined on the same optical/image capture equipment.
These standard procedures minimized variation, at least in
this data set.

We have noted, during measurement, that the analytic
methods we have used are highly suited to quantifying vari-
ability in different areas of the same tumor biopsy. Human
pathologists attempt to perform an evaluation of cytologic
variation during biopsy evaluation, but clearly do not quan-
tify absolute variability nor ascertain if variation is key to
prognosis. For example, it may be very important to deter-
mine the organization and cellular characteristics of the tu-
mor margin cells, since they are most likely to represent the
invasive interface with normal tissue. We are actively inves-
tigating the relationship between tumor behavior and vari-
ability of fractal measures within individual biopsies.

Perhaps the most significant aspect of this work is that
there is a potential to develop a coherent suite of mathemati-
cal tools for defining benign tumor characteristics and malig-
nant tumor characteristics. Not only might this analytical
process quantify “typical” morphologic measures(nuclear
size, shape and so forth) but could also provide a way to
mathematically evaluate tumor organization. An added ben-
efit could be the application of a computational intensive
environment to augment tumor analysis without inherent pa-
thologist bias created by experience and affected by both
knowledge base and human ergometric factors.

This study was carried out on a very limited number of
images and for that reason, the analysis is suggestive, not
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definitive and a much larger study is indicated to test the
implications of this preliminary analysis. The images pro-
cessed for analysis in the research presented in this paper
were in the standard format used by the pathologists in our
laboratory. Although high resolution information is lost when
jpeg compression is utilized, we felt that there was sufficient
accurate data at the scales of interest to pathologists to allow
our calculations to be meaningful. We appreciate that future
studies should include parallel analysis of jpeg images with
the same images in TIFF or other formats that do not degrade
the high resolution data originally present in the images in
order to test whether lossless image compression would pro-
duce better results.

We are currently collaborating with the Comprehensive
Cancer Center of Wake Forest University to analyze of im-
ages of glioblastoma multiforme, images of canine malignant

lymphoma and perform a comparison between fractal char-
acteristics and WHO classification of lymphoma morphol-
ogy. This study is ongoing and its results will be reported in
the future. We will extend the present analytical techniques
to include filtering of the images based on the color of stain
used as well as “tuning” the threshold for conversion of gray-
scale to black and white images through critical value perco-
lation analysis.
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